Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 19(3): 707-717, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38442242

ABSTRACT

Surface lipids on pathogenic mycobacteria modulate infection outcomes by regulating host immune responses. Phenolic glycolipid (PGL) is a host-modulating surface lipid that varies among clinical Mycobacterium tuberculosis strains. PGL is also found in Mycobacterium marinum, where it promotes infection of zebrafish through effects on the innate immune system. Given the important role this lipid plays in the host-pathogen relationship, tools for profiling its abundance, spatial distribution, and dynamics are needed. Here, we report a strategy for imaging PGL in live mycobacteria using bioorthogonal metabolic labeling. We functionalized the PGL precursor p-hydroxybenzoic acid (pHB) with an azide group (3-azido pHB). When fed to mycobacteria, 3-azido pHB was incorporated into the cell surface, which could then be visualized via the bioorthogonal conjugation of a fluorescent probe. We confirmed that 3-azido pHB incorporates into PGL using mass spectrometry methods and demonstrated selectivity for PGL-producing M. marinum and M. tuberculosis strains. Finally, we applied this metabolic labeling strategy to study the dynamics of PGL within the mycobacterial membrane. This new tool enables visualization of PGL that may facilitate studies of mycobacterial pathogenesis.


Subject(s)
Mycobacterium marinum , Mycobacterium tuberculosis , Animals , Glycolipids/metabolism , Virulence Factors/metabolism , Zebrafish , Mycobacterium tuberculosis/metabolism , Mycobacterium marinum/metabolism
2.
J Am Chem Soc ; 146(12): 8480-8485, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38484471

ABSTRACT

Mosquito control methods are vital to curtail the spread of life-threatening illnesses, such as dengue fever, malaria, and yellow fever. Vector control technologies must be selective to minimize deleterious effects on our ecosystem. Successful methods that control mosquito larva populations utilize the uniquely high alkaline nature of the midgut. Here, we present novel protected triazabutadienes (pTBD) that are deprotected under basic conditions of the larval midgut, releasing an aryl diazonium ion (ADI) that results in protein modification. The probes contain a bioorthogonal terminal alkyne handle, enabling a selective Cu-click reaction with an azidofluorophore for quantification by SDS PAGE and visualization using fluorescence microscopy. A control TBD, unable to release an ADI, did not label the midgut. We envision our chemical probes will aid in the development of new selective mosquito control methods, thus preventing the spread of mosquito-borne illnesses with minimal impact on other organisms in the ecosystem.


Subject(s)
Ecosystem , Malaria , Animals , Larva , Extreme Environments , Mosquito Control/methods , Malaria/prevention & control
3.
bioRxiv ; 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38234773

ABSTRACT

Mosquito control methods are vital for the spread of life-threatening illnesses such as dengue fever, malaria, and yellow fever. Vector control technologies must be selective to minimize deleterious effects to our ecosystem. Successful methods that control mosquito larva populations utilize the uniquely high alkaline nature of the midgut. Here, we present novel protected triazabutadienes (pTBD) which are deprotected under basic conditions of the larval midgut, releasing an aryl diazonium ion (ADI) that results in protein modification. The probes contain a bioorthogonal terminal alkyne handle, enabling a selective Cu-click reaction with an azido-fluorophore for quantification by SDS PAGE and visualization using fluorescence microscopy. A control TBD, unable to release an ADI, did not label the midgut. We envision our chemical probes will aid in the development of new selective mosquito control methods thus preventing the spread of mosquito-borne illnesses with minimal impact on other organisms in the ecosystem.

5.
Protein Sci ; 29(8): 1784-1793, 2020 08.
Article in English | MEDLINE | ID: mdl-32483864

ABSTRACT

Chemical modification of proteins has been crucial in engineering protein-based therapies, targeted biopharmaceutics, molecular probes, and biomaterials. Here, we explore the use of a conjugation-based approach to sense alternative conformational states in proteins. Tyrosine has both hydrophobic and hydrophilic qualities, thus allowing it to be positioned at protein surfaces, or binding interfaces, or to be buried within a protein. Tyrosine can be conjugated with 4-phenyl-3H-1,2,4-triazole-3,5(4H)-dione (PTAD). We hypothesized that individual protein conformations could be distinguished by labeling tyrosine residues in the protein with PTAD. We conjugated tyrosine residues in a well-folded protein, bovine serum albumin (BSA), and quantified labeled tyrosine with liquid chromatography with tandem mass spectrometry. We applied this approach to alternative conformations of BSA produced in the presence of urea. The amount of PTAD labeling was found to relate to the depth of each tyrosine relative to the protein surface. This study demonstrates a new use of tyrosine conjugation using PTAD as an analytic tool able to distinguish the conformational states of a protein.


Subject(s)
Serum Albumin, Bovine/chemistry , Triazoles/chemistry , Animals , Cattle , Chromatography, Liquid , Protein Domains , Tandem Mass Spectrometry , Tyrosine/chemistry
6.
Chembiochem ; 17(23): 2220-2222, 2016 12 02.
Article in English | MEDLINE | ID: mdl-27662242

ABSTRACT

Recent work on triazabutadienes has shown that they have the ability to release aryl diazonium ions under exceptionally mild acidic conditions. There are instances that require that this release be prevented or minimized. Accordingly, a base-labile protection strategy for the triazabutadiene is presented. It affords enhanced synthetic and practical utility of the triazabutadiene. The effects of steric and electronic factors in the rate of removal are discussed, and the triazabutadiene protection is shown to be compatible with the traditional acid-labile protection strategy used in solid phase peptide synthesis.


Subject(s)
Acids/chemistry , Butadienes/chemistry , Molecular Structure , Peptides/chemical synthesis , Peptides/chemistry
7.
Angew Chem Int Ed Engl ; 54(3): 1032-5, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25429919

ABSTRACT

To better understand the range of cellular interactions of Pt(II) -based chemotherapeutics, robust and efficient methods to track and analyze Pt targets are needed. A powerful approach is to functionalize Pt(II) compounds with alkyne or azide moieties for post-treatment conjugation through the azide-alkyne cycloaddition (click) reaction. Herein, we report an alkyne-appended cis-diamine Pt(II) compound, cis-[Pt(2-(5-hexynyl)amido-1,3-propanediamine)Cl2] (1), the X-ray crystal structure of which exhibits a combination of unusual radially distributed CH/π(C≡C) interactions, Pt-Pt bonding, and NH:O/NH:Cl hydrogen bonds. In solution, 1 exhibits no Pt-alkyne interactions and binds readily to DNA. Subsequent click reactivity with nonfluorescent dansyl azide results in a 70-fold fluorescence increase. This result demonstrates the potential for this new class of alkyne-modified Pt compound for the comprehensive detection and isolation of Pt-bound biomolecules.


Subject(s)
Alkynes/chemistry , Organoplatinum Compounds/chemistry , Platinum/chemistry , Azides/chemistry , Click Chemistry , Crystallography, X-Ray , Cycloaddition Reaction , DNA/chemistry , Fluorescent Dyes/chemistry , Hydrogen Bonding , Molecular Conformation , Organoplatinum Compounds/chemical synthesis , Spectrometry, Fluorescence
8.
J Am Chem Soc ; 135(32): 11680-3, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23879391

ABSTRACT

Despite the broad use of platinum-based chemotherapeutics, identification of their full range of cellular targets remains a significant challenge. In order to identify, visualize, and isolate cellular targets of Pt(II) complexes, we have modified the chemotherapeutic drug picoplatin with an azide moiety for subsequent click reactivity. The new compound picazoplatin readily binds DNA and RNA oligonucleotides and undergoes facile post-labeling click reactions to alkyne-fluorophore conjugates. Pt-fluorophore click reactions in rRNA purified from drug-treated Saccharomyces cerevisiae demonstrate its potential for future in vivo efforts.


Subject(s)
Azides/chemistry , Organoplatinum Compounds/chemistry , Alkynes/chemistry , Azides/pharmacology , Click Chemistry , Drug Discovery , Fluorescent Dyes/chemistry , Models, Molecular , Oligonucleotides/metabolism , Organoplatinum Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...